Consumer and Producer Theory Quick Notes Sierra Smith

03-11-2024

Consumer Maximization Problem

- $\max_{x} u(x)$ subject to $px \leq w, x_k \geq 0, 1 \leq k \leq m$
- Budget set: $B(p, w) \equiv \{x \mid px \leq w\}$
- A solution exists if $u(\cdot)$ is continuous and B(p,w) is compact (Weierstrass)

Walrasian Demand Correspondence

• $x(p, w) = \arg \max_{x \in B(p, w)} u(x)$

Walras Law

- If $X = \mathbb{R}^m_+$ and \succeq is continuous and locally nonsatiated, then x(p, w) satisfies:
 - 1. Homogeneous of degree 0: $x(\alpha p, \alpha w) = x(p, w)$
 - 2. Budget exhaustion: px = w
 - 3. Upper hemicontinuity
 - 4. If \succeq is convex, then x(p, w) is convex-valued. If strictly convex, x(p, w) is a function

Substitution Effect

• $S_{KL}(p, w) = \frac{\partial x_k(p, w)}{\partial p_L} + \frac{\partial x_k(p, w)}{\partial w} \cdot x_L(p, w)$

Indirect Utility Function

- $v(p, w) \equiv \max_{x \in B(p, w)} u(x)$
- Properties (assuming $u(\cdot)$ is continuous and represents locally nonsatiated preferences over \mathbb{R}_+^m):
 - 1. Homogeneous of degree 0 in (p, w)
 - 2. Strictly increasing in w, non-increasing in p_k
 - 3. Quasiconvex: $\{(p, w) \mid v(p, w) \leq \overline{v}\}$ is convex for all \overline{v}
 - 4. Continuous in (p, w)

Roy's Identity

•
$$x_k(p, w) = -\frac{\partial v(p, w)}{\partial p_k} / \frac{\partial v(p, w)}{\partial w}$$

•
$$\frac{\partial v(p,w)}{\partial p_k} = -x_k(p,w) \cdot \frac{\partial v(p,w)}{\partial w}$$

Expenditure Minimization Problem

•
$$\min_{x_k \ge 0} \sum_{k=1}^m p_k x_k$$
 subject to $u(x) \ge \overline{u}$

Hicksian Demand

- $h(p, \overline{u})$: set of minimizers
- If $u(\cdot)$ is continuous and \succeq is locally nonsatiated:
 - 1. Homogeneous of degree 0 in p
 - 2. Achieves utility exactly: $u(x) = \overline{u}$

Duality

- If $u(\cdot)$ is continuous and locally nonsatiated:
 - 1. x(p, w) = h(p, v(p, w))
 - 2. $h(p, \overline{u}) = x(p, e(p, \overline{u}))$
 - 3. e(p, v(p, w)) = w
 - 4. $v(p, e(p, \overline{u})) = \overline{u}$

Expenditure Function

- $e(p, \overline{u})$: minimal expenditure to achieve utility \overline{u}
- \bullet Properties (if \succeq is continuous and locally nonsatiated):
 - 1. Homogeneous of degree 1 in p
 - 2. Strictly increasing in \overline{u} ; non-decreasing in p_k
 - 3. Concave in p
 - 4. Continuous in (p, \overline{u})

Shepard's Lemma

• $h_k(p, \overline{u}) = \frac{\partial e(p, \overline{u})}{\partial p_k}$

Welfare Measures

- Compensating Variation: $CV(p^o, p', w) = w e(p', u^o)$
- Equivalent Variation: $EV(p^o, p', w) = e(p^o, u') w$
- $u' = v(p', w), \quad u^o = v(p^o, w)$

Profit Maximization

- $\bullet \max_{z \in \mathbb{R}^{m-1}} pf(z) wz$
- w: price of inputs z
- p: price of output f(z)
- f(z): input demand function
- q(p): supply function

Cost Minimization

- $\min_{z \in \mathbb{R}^{m-1}} p_{-m}z$ subject to $f(z) \ge q$
- $C(p_{-m}, q)$: cost function
- Profit: $\pi(p) = \max_{q \in \mathbb{R}_+} p_m q c(p_{-m}, q)$
- Properties of $c(p_{-m}, q)$:
 - Homogeneous of degree 1 in $p_{-m}\,$
 - Non-decreasing in q
 - Concave in p_{-m}